Reassembling Broken Objects using Breaking Curves

A. Alagrami*, L. Palmieri*, S. Aslan*, M. Pelillo, S. Vascon

Università Ca'Foscari Venezia

CVPR 2023 Workshop on 3D Vision and Robotics

June 18th, 2023

Related Work and SOTA

Geometric Methods

Reassembling Fractured Objects by Geometric Matching, Huang et al. SIGGRAPH 2006

Pairwise Assembly

Neural Shape Mating: Self-Supervised Object Assembly with Adversarial Shape Priors, Chen et al, CVPR 2022

Benchmarking and Dataset

Breaking Bad: A Dataset for Geometric Fracture and Reassembly, Sellan, Chen, Wu et al., NeurIPS 2022 (Datasets and Benchmarks Track)

Assembling Objects Broken in Multiple Parts

Jigsaw: Learning to Assemble Multiple Fractured Objects, Lu, Sun and Quang, Under Review 2023

Main Goal & Contributions

We aim at reassembling two parts of a broken object using point clouds:

- assuming no prior information on the geometry of the broken objects
- without the need of surface reconstruction

Contributions:

- Creation of a flexible and modular framework for assembling broken objects
- The graph-based breaking curve extraction generalizes well to different shapes, allowing to use the same approach on real and synthetic objects without prior geometric assumptions

Pipeline

The pipeline is divided into 3 main steps

Extracting breaking curves, segmenting and registering segmented regions

Breaking Curves Extraction

Breaking curves characterize object's fractures:

- 1. Represent a point cloud as an ε-graph
- 2. Compute for each vertex *p* a corner penalty [1]

 $\omega_{co}(p) = \frac{\lambda_2(p) - \lambda_0(p)}{\lambda_2(p)}$

- 3. Select p nodes where $\omega_{co}(p) < heta$
- 4. Pruning + Dilation to promote the creation of closed breaking curves

Region Segmentation

<u>Regions</u> are part of the point cloud enclosed by a breaking curves

A B.C.-constrained region-growing technique extracts the regions. 5.

[1] Gumhold et.al. Feature extraction from point clouds. Proceedings of 10th international meshing roundtable, 2001, 11 2001

(b) Breaking Curves

(c) Segmented Regions

- 1. Discarding smaller regions
- 2. Perform ICP over all possible pair of regions
- 3. Assess alignment quality of each pair with the Chamfer distance
- 4. Select the registration with the best score and use it to align the two point clouds.

- 1. Discarding smaller regions
- 2. Perform ICP over all possible pair of regions
- 3. Assess alignment quality of each pair with the Chamfer distance
- 4. Select the registration with the best score and use it to align the two point clouds.

- 1. Discarding smaller regions
- 2. Perform ICP over all possible pair of regions
- 3. Assess alignment quality of each pair with the Chamfer distance
- 4. Select the registration with the best score and use it to align the two point clouds.

<u>CD</u>	RQ1	RQ2	RQ3
RP1	0.91	0.98	0.97
RP2	0.1	0.9	0.7

(a) DrinkBottle (b) Broken Parts (c) Breaking curves (c) Regions (

- 1. Discarding smaller regions
- 2. Perform ICP over all possible pair of regions
- 3. Assess alignment quality of each pair with the Chamfer distance
- 4. Select the registration with the best score and use it to align the two point clouds.

<u>CD</u>	RQ1	RQ2	RQ3
RP1	0.91	0.98	0.97
RP2	0.1	0.9	0.7

Qualitative Results

Broken Fresco from Pompeii National Park

(3D scan, *real* data, RePAIR Project)

Brick (3D scan, *real* data, TUWien University)

Quantitative Results

The proposed model reaches:

- Smaller RMSE in terms of rotation
- Smaller RMSE in terms of translation

	Relative RMSE (R)			RMSE (T)		
Category	ICP [2]	DGL♠ [7]	ours	ICP [2]	DGL♠ [7]	ours
BeerBottle	57.028	78.933	1.62	1.104	0.073	0.02
WineBottle	54.262	84.699	1.58	0.743	0.024	0.02
DrinkBottle	60.253	70.014	1.89	1.288	0.008	0.033
Bottle	68.125	76.802	1.983	1.198	0.078	0.077
Mug	5.041	86.221	1.12	0.364	0.164	0.025
Cookie	12.594	85.707	1.96	0.632	0.159	0.043
Mirror	0.593	81.454	0.111	0.503	0.125	0.001
ToyFigure	208.333	87.972	1.98	4.123	0.159	0.079
Statue	105.582	89.605	0.66	2.159	0.149	0.003
Vase	30.756	82.218	0.592	1.496	0.109	0.002
Brick [‡] [8]	11.577	62.820	3.064	2.356	1.684	0.626
Repair ^{♣2}	7.911	87.491	3.466	2.525	0.076	0.695

No need for learning

Conclusions

- Best results overall (both R and T)
- Generalization to different categories or model types (agnostic)

https://repairproject.github.io/AAFR/

Future work:

- 1. Multi-part assembly
- 2. Enhancing breaking curve extraction methodology to make it more parameter-free

This work is part of a project that has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No.964854.